In discounted cash flow (DCF) valuation techniques the value of the stock is estimated based upon present value of some measure of cash flow. Free cash flow to the firm (FCFF) is generally described as cash flows after direct costs and before any payments to capital suppliers.
Paying user area
Try for free
Roper Technologies Inc. pages available for free this week:
- Income Statement
- Balance Sheet: Liabilities and Stockholders’ Equity
- Cash Flow Statement
- Analysis of Profitability Ratios
- Analysis of Long-term (Investment) Activity Ratios
- Enterprise Value to EBITDA (EV/EBITDA)
- Enterprise Value to FCFF (EV/FCFF)
- Dividend Discount Model (DDM)
- Present Value of Free Cash Flow to Equity (FCFE)
- Aggregate Accruals
The data is hidden behind: . Unhide it.
Get full access to the entire website from $10.42/mo, or
get 1-month access to Roper Technologies Inc. for $22.49.
This is a one-time payment. There is no automatic renewal.
We accept:
Intrinsic Stock Value (Valuation Summary)
Roper Technologies Inc., free cash flow to the firm (FCFF) forecast
US$ in thousands, except per share data
Year | Value | FCFFt or Terminal value (TVt) | Calculation | Present value at |
---|---|---|---|---|
01 | FCFF0 | |||
1 | FCFF1 | = × (1 + ) | ||
2 | FCFF2 | = × (1 + ) | ||
3 | FCFF3 | = × (1 + ) | ||
4 | FCFF4 | = × (1 + ) | ||
5 | FCFF5 | = × (1 + ) | ||
5 | Terminal value (TV5) | = × (1 + ) ÷ ( – ) | ||
Intrinsic value of Roper Technologies Inc. capital | ||||
Less: Long-term debt, including current portion (fair value) | ||||
Intrinsic value of Roper Technologies Inc. common stock | ||||
Intrinsic value of Roper Technologies Inc. common stock (per share) | ||||
Current share price |
Based on: 10-K (reporting date: 2022-12-31).
Disclaimer!
Valuation is based on standard assumptions. There may exist specific factors relevant to stock value and omitted here. In such a case, the real stock value may differ significantly form the estimated. If you want to use the estimated intrinsic stock value in investment decision making process, do so at your own risk.
Weighted Average Cost of Capital (WACC)
Value1 | Weight | Required rate of return2 | Calculation | |
---|---|---|---|---|
Equity (fair value) | ||||
Long-term debt, including current portion (fair value) | = × (1 – ) |
Based on: 10-K (reporting date: 2022-12-31).
1 US$ in thousands
Equity (fair value) = No. shares of common stock outstanding × Current share price
= ×
=
Long-term debt, including current portion (fair value). See details »
2 Required rate of return on equity is estimated by using CAPM. See details »
Required rate of return on debt. See details »
Required rate of return on debt is after tax.
Estimated (average) effective income tax rate
= ( + + + + ) ÷ 5
=
WACC =
FCFF Growth Rate (g)
Based on: 10-K (reporting date: 2022-12-31), 10-K (reporting date: 2021-12-31), 10-K (reporting date: 2020-12-31), 10-K (reporting date: 2019-12-31), 10-K (reporting date: 2018-12-31).
2022 Calculations
2 Interest expense, net, after tax = Interest expense, net × (1 – EITR)
= × (1 – )
=
3 EBIT(1 – EITR)
= Net earnings – Net earnings from discontinued operations + Interest expense, net, after tax
= – +
=
4 RR = [EBIT(1 – EITR) – Interest expense (after tax) and dividends] ÷ EBIT(1 – EITR)
= [ – ] ÷
=
5 ROIC = 100 × EBIT(1 – EITR) ÷ Total capital
= 100 × ÷
=
6 g = RR × ROIC
= ×
=
FCFF growth rate (g) implied by single-stage model
g = 100 × (Total capital, fair value0 × WACC – FCFF0) ÷ (Total capital, fair value0 + FCFF0)
= 100 × ( × – ) ÷ ( + )
=
where:
Total capital, fair value0 = current fair value of Roper Technologies Inc. debt and equity (US$ in thousands)
FCFF0 = the last year Roper Technologies Inc. free cash flow to the firm (US$ in thousands)
WACC = weighted average cost of Roper Technologies Inc. capital
Year | Value | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 and thereafter | g5 |
where:
g1 is implied by PRAT model
g5 is implied by single-stage model
g2, g3 and g4 are calculated using linear interpoltion between g1 and g5
Calculations
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=