In discounted cash flow (DCF) valuation techniques the value of the stock is estimated based upon present value of some measure of cash flow. Free cash flow to equity (FCFE) is generally described as cash flows available to the equity holder after payments to debt holders and after allowing for expenditures to maintain the company asset base.
Paying user area
Try for free
Visa Inc. pages available for free this week:
- Statement of Comprehensive Income
- Analysis of Solvency Ratios
- Analysis of Long-term (Investment) Activity Ratios
- Dividend Discount Model (DDM)
- Operating Profit Margin since 2008
- Return on Assets (ROA) since 2008
- Current Ratio since 2008
- Debt to Equity since 2008
- Price to Operating Profit (P/OP) since 2008
- Price to Book Value (P/BV) since 2008
The data is hidden behind: . Unhide it.
Get full access to the entire website from $10.42/mo, or
get 1-month access to Visa Inc. for $22.49.
This is a one-time payment. There is no automatic renewal.
We accept:
Intrinsic Stock Value (Valuation Summary)
Year | Value | FCFEt or Terminal value (TVt) | Calculation | Present value at |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Terminal value (TV5) | = × (1 + ) ÷ ( – ) | ||
Intrinsic value of Visa Inc. common stock | ||||
Intrinsic value of Visa Inc. common stock (per share) | ||||
Current share price |
Based on: 10-K (reporting date: 2022-09-30).
Disclaimer!
Valuation is based on standard assumptions. There may exist specific factors relevant to stock value and omitted here. In such a case, the real stock value may differ significantly form the estimated. If you want to use the estimated intrinsic stock value in investment decision making process, do so at your own risk.
Required Rate of Return (r)
Assumptions | ||
Rate of return on LT Treasury Composite1 | RF | |
Expected rate of return on market portfolio2 | E(RM) | |
Systematic risk of Visa Inc. common stock | βV | |
Required rate of return on Visa Inc. common stock3 | rV |
1 Unweighted average of bid yields on all outstanding fixed-coupon U.S. Treasury bonds neither due or callable in less than 10 years (risk-free rate of return proxy).
3 rV = RF + βV [E(RM) – RF]
= + [ – ]
=
FCFE Growth Rate (g)
Based on: 10-K (reporting date: 2022-09-30), 10-K (reporting date: 2021-09-30), 10-K (reporting date: 2020-09-30), 10-K (reporting date: 2019-09-30), 10-K (reporting date: 2018-09-30), 10-K (reporting date: 2017-09-30).
2022 Calculations
1 Retention rate = (Net income – Cash dividends declared and paid) ÷ Net income
= ( – ) ÷
=
2 Profit margin = 100 × Net income ÷ Net revenues
= 100 × ÷
=
3 Asset turnover = Net revenues ÷ Total assets
= ÷
=
4 Financial leverage = Total assets ÷ Equity
= ÷
=
5 g = Retention rate × Profit margin × Asset turnover × Financial leverage
= × × ×
=
FCFE growth rate (g) implied by single-stage model
g = 100 × (Equity market value0 × r – FCFE0) ÷ (Equity market value0 + FCFE0)
= 100 × ( × – ) ÷ ( + )
=
where:
Equity market value0 = current market value of Visa Inc. common stock (US$ in millions)
FCFE0 = the last year Visa Inc. free cash flow to equity (US$ in millions)
r = required rate of return on Visa Inc. common stock
Year | Value | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 and thereafter | g5 |
where:
g1 is implied by PRAT model
g5 is implied by single-stage model
g2, g3 and g4 are calculated using linear interpoltion between g1 and g5
Calculations
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=