Stock Analysis on Net

Broadcom Inc. (NASDAQ:AVGO)

$24.99

Present Value of Free Cash Flow to the Firm (FCFF)

Microsoft Excel

Paying user area


We accept:

Visa Mastercard American Express Maestro Discover JCB PayPal Apple Pay Google Pay
Visa Secure Mastercard Identity Check American Express SafeKey

Intrinsic Stock Value (Valuation Summary)

Broadcom Inc., free cash flow to the firm (FCFF) forecast

US$ in millions, except per share data

Microsoft Excel
Year Value FCFFt or Terminal value (TVt) Calculation Present value at
01 FCFF0
1 FCFF1 = × (1 + )
2 FCFF2 = × (1 + )
3 FCFF3 = × (1 + )
4 FCFF4 = × (1 + )
5 FCFF5 = × (1 + )
5 Terminal value (TV5) = × (1 + ) ÷ ()
Intrinsic value of Broadcom Inc. capital
Less: 8.00% Mandatory Convertible Preferred Stock, Series A, $0.001 par value (fair value)
Less: Debt (fair value)
Intrinsic value of Broadcom Inc. common stock
 
Intrinsic value of Broadcom Inc. common stock (per share)
Current share price

Based on: 10-K (reporting date: 2024-11-03).

Disclaimer!
Valuation is based on standard assumptions. There may exist specific factors relevant to stock value and omitted here. In such a case, the real stock value may differ significantly form the estimated. If you want to use the estimated intrinsic stock value in investment decision making process, do so at your own risk.


Weighted Average Cost of Capital (WACC)

Broadcom Inc., cost of capital

Microsoft Excel
Value1 Weight Required rate of return2 Calculation
Equity (fair value)
8.00% Mandatory Convertible Preferred Stock, Series A, $0.001 par value (fair value)
Debt (fair value) = × (1 – )

Based on: 10-K (reporting date: 2024-11-03).

1 US$ in millions

   Equity (fair value) = No. shares of common stock outstanding × Current share price
= ×
=

   Debt (fair value). See details »

2 Required rate of return on equity is estimated by using CAPM. See details »

   Required rate of return on debt. See details »

   Required rate of return on debt is after tax.

   Estimated (average) effective income tax rate
= ( + + + + + ) ÷ 6
=

WACC =


FCFF Growth Rate (g)

FCFF growth rate (g) implied by PRAT model

Broadcom Inc., PRAT model

Microsoft Excel
Average Nov 3, 2024 Oct 29, 2023 Oct 30, 2022 Oct 31, 2021 Nov 1, 2020 Nov 3, 2019
Selected Financial Data (US$ in millions)
Interest expense
Loss from discontinued operations, net of income taxes
Net income
 
Effective income tax rate (EITR)1
 
Interest expense, after tax2
Add: Dividends to preferred stockholders
Add: Dividends to common stockholders
Interest expense (after tax) and dividends
 
EBIT(1 – EITR)3
 
Current portion of long-term debt
Long-term debt, excluding current portion
Stockholders’ equity
Total capital
Financial Ratios
Retention rate (RR)4
Return on invested capital (ROIC)5
Averages
RR
ROIC
 
FCFF growth rate (g)6

Based on: 10-K (reporting date: 2024-11-03), 10-K (reporting date: 2023-10-29), 10-K (reporting date: 2022-10-30), 10-K (reporting date: 2021-10-31), 10-K (reporting date: 2020-11-01), 10-K (reporting date: 2019-11-03).

1 See details »

2024 Calculations

2 Interest expense, after tax = Interest expense × (1 – EITR)
= × (1 – )
=

3 EBIT(1 – EITR) = Net income – Loss from discontinued operations, net of income taxes + Interest expense, after tax
= +
=

4 RR = [EBIT(1 – EITR) – Interest expense (after tax) and dividends] ÷ EBIT(1 – EITR)
= [] ÷
=

5 ROIC = 100 × EBIT(1 – EITR) ÷ Total capital
= 100 × ÷
=

6 g = RR × ROIC
= ×
=


FCFF growth rate (g) implied by single-stage model

g = 100 × (Total capital, fair value0 × WACC – FCFF0) ÷ (Total capital, fair value0 + FCFF0)
= 100 × ( × ) ÷ ( + )
=

where:

Total capital, fair value0 = current fair value of Broadcom Inc. debt and equity (US$ in millions)
FCFF0 = the last year Broadcom Inc. free cash flow to the firm (US$ in millions)
WACC = weighted average cost of Broadcom Inc. capital


FCFF growth rate (g) forecast

Broadcom Inc., H-model

Microsoft Excel
Year Value gt
1 g1
2 g2
3 g3
4 g4
5 and thereafter g5

where:
g1 is implied by PRAT model
g5 is implied by single-stage model
g2, g3 and g4 are calculated using linear interpoltion between g1 and g5

Calculations

g2 = g1 + (g5g1) × (2 – 1) ÷ (5 – 1)
= + () × (2 – 1) ÷ (5 – 1)
=

g3 = g1 + (g5g1) × (3 – 1) ÷ (5 – 1)
= + () × (3 – 1) ÷ (5 – 1)
=

g4 = g1 + (g5g1) × (4 – 1) ÷ (5 – 1)
= + () × (4 – 1) ÷ (5 – 1)
=