Stock Analysis on Net

Super Micro Computer Inc. (NASDAQ:SMCI)

$24.99

Present Value of Free Cash Flow to Equity (FCFE)

Microsoft Excel

In discounted cash flow (DCF) valuation techniques the value of the stock is estimated based upon present value of some measure of cash flow. Free cash flow to equity (FCFE) is generally described as cash flows available to the equity holder after payments to debt holders and after allowing for expenditures to maintain the company asset base.

Paying users area

The data is hidden behind: . Unhide it.

This is a one-time payment. There is no automatic renewal.


We accept:

Visa Mastercard American Express Maestro Discover JCB PayPal Apple Pay Google Pay
Visa Secure Mastercard Identity Check American Express SafeKey

Intrinsic Stock Value (Valuation Summary)

Super Micro Computer Inc., free cash flow to equity (FCFE) forecast

US$ in thousands, except per share data

Microsoft Excel
Year Value FCFEt or Terminal value (TVt) Calculation Present value at
01 FCFE0
1 FCFE1 = × (1 + )
2 FCFE2 = × (1 + )
3 FCFE3 = × (1 + )
4 FCFE4 = × (1 + )
5 FCFE5 = × (1 + )
5 Terminal value (TV5) = × (1 + ) ÷ ()
Intrinsic value of Super Micro Computer Inc. common stock
 
Intrinsic value of Super Micro Computer Inc. common stock (per share)
Current share price

Based on: 10-K (reporting date: 2023-06-30).

Disclaimer!
Valuation is based on standard assumptions. There may exist specific factors relevant to stock value and omitted here. In such a case, the real stock value may differ significantly form the estimated. If you want to use the estimated intrinsic stock value in investment decision making process, do so at your own risk.


Required Rate of Return (r)

Microsoft Excel
Assumptions
Rate of return on LT Treasury Composite1 RF
Expected rate of return on market portfolio2 E(RM)
Systematic risk of Super Micro Computer Inc. common stock βSMCI
 
Required rate of return on Super Micro Computer Inc. common stock3 rSMCI

1 Unweighted average of bid yields on all outstanding fixed-coupon U.S. Treasury bonds neither due or callable in less than 10 years (risk-free rate of return proxy).

2 See details »

3 rSMCI = RF + βSMCI [E(RM) – RF]
= + []
=


FCFE Growth Rate (g)

FCFE growth rate (g) implied by PRAT model

Super Micro Computer Inc., PRAT model

Microsoft Excel
Average Jun 30, 2023 Jun 30, 2022 Jun 30, 2021 Jun 30, 2020 Jun 30, 2019 Jun 30, 2018
Selected Financial Data (US$ in thousands)
Net income
Net sales
Total assets
Total Super Micro Computer, Inc. stockholders’ equity
Financial Ratios
Retention rate1
Profit margin2
Asset turnover3
Financial leverage4
Averages
Retention rate
Profit margin
Asset turnover
Financial leverage
 
FCFE growth rate (g)5

Based on: 10-K (reporting date: 2023-06-30), 10-K (reporting date: 2022-06-30), 10-K (reporting date: 2021-06-30), 10-K (reporting date: 2020-06-30), 10-K (reporting date: 2019-06-30), 10-K (reporting date: 2018-06-30).

2023 Calculations

1 Company does not pay dividends

2 Profit margin = 100 × Net income ÷ Net sales
= 100 × ÷
=

3 Asset turnover = Net sales ÷ Total assets
= ÷
=

4 Financial leverage = Total assets ÷ Total Super Micro Computer, Inc. stockholders’ equity
= ÷
=

5 g = Retention rate × Profit margin × Asset turnover × Financial leverage
= × × ×
=


FCFE growth rate (g) implied by single-stage model

g = 100 × (Equity market value0 × r – FCFE0) ÷ (Equity market value0 + FCFE0)
= 100 × ( × ) ÷ ( + )
=

where:
Equity market value0 = current market value of Super Micro Computer Inc. common stock (US$ in thousands)
FCFE0 = the last year Super Micro Computer Inc. free cash flow to equity (US$ in thousands)
r = required rate of return on Super Micro Computer Inc. common stock


FCFE growth rate (g) forecast

Super Micro Computer Inc., H-model

Microsoft Excel
Year Value gt
1 g1
2 g2
3 g3
4 g4
5 and thereafter g5

where:
g1 is implied by PRAT model
g5 is implied by single-stage model
g2, g3 and g4 are calculated using linear interpoltion between g1 and g5

Calculations

g2 = g1 + (g5g1) × (2 – 1) ÷ (5 – 1)
= + () × (2 – 1) ÷ (5 – 1)
=

g3 = g1 + (g5g1) × (3 – 1) ÷ (5 – 1)
= + () × (3 – 1) ÷ (5 – 1)
=

g4 = g1 + (g5g1) × (4 – 1) ÷ (5 – 1)
= + () × (4 – 1) ÷ (5 – 1)
=