In discounted cash flow (DCF) valuation techniques the value of the stock is estimated based upon present value of some measure of cash flow. Free cash flow to the firm (FCFF) is generally described as cash flows after direct costs and before any payments to capital suppliers.
Paying user area
Try for free
Philip Morris International Inc. pages available for free this week:
- Statement of Comprehensive Income
- Analysis of Profitability Ratios
- DuPont Analysis: Disaggregation of ROE, ROA, and Net Profit Margin
- Enterprise Value (EV)
- Enterprise Value to FCFF (EV/FCFF)
- Capital Asset Pricing Model (CAPM)
- Dividend Discount Model (DDM)
- Debt to Equity since 2008
- Price to Earnings (P/E) since 2008
- Price to Book Value (P/BV) since 2008
The data is hidden behind: . Unhide it.
Get full access to the entire website from $10.42/mo, or
get 1-month access to Philip Morris International Inc. for $24.99.
This is a one-time payment. There is no automatic renewal.
We accept:
Intrinsic Stock Value (Valuation Summary)
Philip Morris International Inc., free cash flow to the firm (FCFF) forecast
US$ in millions, except per share data
Year | Value | FCFFt or Terminal value (TVt) | Calculation | Present value at |
---|---|---|---|---|
01 | FCFF0 | |||
1 | FCFF1 | = × (1 + ) | ||
2 | FCFF2 | = × (1 + ) | ||
3 | FCFF3 | = × (1 + ) | ||
4 | FCFF4 | = × (1 + ) | ||
5 | FCFF5 | = × (1 + ) | ||
5 | Terminal value (TV5) | = × (1 + ) ÷ ( – ) | ||
Intrinsic value of Philip Morris International Inc. capital | ||||
Less: Debt, including finance lease obligations (fair value) | ||||
Intrinsic value of Philip Morris International Inc. common stock | ||||
Intrinsic value of Philip Morris International Inc. common stock (per share) | ||||
Current share price |
Based on: 10-K (reporting date: 2023-12-31).
Disclaimer!
Valuation is based on standard assumptions. There may exist specific factors relevant to stock value and omitted here. In such a case, the real stock value may differ significantly form the estimated. If you want to use the estimated intrinsic stock value in investment decision making process, do so at your own risk.
Weighted Average Cost of Capital (WACC)
Value1 | Weight | Required rate of return2 | Calculation | |
---|---|---|---|---|
Equity (fair value) | ||||
Debt, including finance lease obligations (fair value) | = × (1 – ) |
Based on: 10-K (reporting date: 2023-12-31).
1 US$ in millions
Equity (fair value) = No. shares of common stock outstanding × Current share price
= ×
=
Debt, including finance lease obligations (fair value). See details »
2 Required rate of return on equity is estimated by using CAPM. See details »
Required rate of return on debt. See details »
Required rate of return on debt is after tax.
Estimated (average) effective income tax rate
= ( + + + + ) ÷ 5
=
WACC =
FCFF Growth Rate (g)
Based on: 10-K (reporting date: 2023-12-31), 10-K (reporting date: 2022-12-31), 10-K (reporting date: 2021-12-31), 10-K (reporting date: 2020-12-31), 10-K (reporting date: 2019-12-31).
2023 Calculations
2 Interest expense, after tax = Interest expense × (1 – EITR)
= × (1 – )
=
3 EBIT(1 – EITR)
= Net earnings attributable to PMI + Interest expense, after tax
= +
=
4 RR = [EBIT(1 – EITR) – Interest expense (after tax) and dividends] ÷ EBIT(1 – EITR)
= [ – ] ÷
=
5 ROIC = 100 × EBIT(1 – EITR) ÷ Total capital
= 100 × ÷
=
6 g = RR × ROIC
= ×
=
FCFF growth rate (g) implied by single-stage model
g = 100 × (Total capital, fair value0 × WACC – FCFF0) ÷ (Total capital, fair value0 + FCFF0)
= 100 × ( × – ) ÷ ( + )
=
where:
Total capital, fair value0 = current fair value of Philip Morris International Inc. debt and equity (US$ in millions)
FCFF0 = the last year Philip Morris International Inc. free cash flow to the firm (US$ in millions)
WACC = weighted average cost of Philip Morris International Inc. capital
Year | Value | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 and thereafter | g5 |
where:
g1 is implied by PRAT model
g5 is implied by single-stage model
g2, g3 and g4 are calculated using linear interpoltion between g1 and g5
Calculations
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=